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ABSTRACT: Serving as the basis of cell life, interactions between nucleic acids and
proteins play essential roles in fundamental cellular processes. Aptamers are unique single-
stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to
interact with proteins specifically. Altering the structure of aptamers will largely modulate
their interactions with proteins and further affect related cellular behaviors. Recently, with
the in-depth research of aptamer−protein interactions, the analytical assays based on their
interactions have been widely developed and become a powerful tool for biomolecular
detection. There are some insightful reviews on aptamers applied in protein detection, while
few systematic discussions are from the perspective of regulating aptamer−protein
interactions. Herein, we comprehensively introduce the methods for regulating aptamer−
protein interactions and elaborate on the detection techniques for analyzing aptamer−
protein interactions. Additionally, this review provides a broad summary of analytical assays
based on the regulation of aptamer−protein interactions for detecting biomolecules. Finally,
we present our perspectives regarding the opportunities and challenges of analytical assays
for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
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1. INTRODUCTION
Intermolecular interactions influence biomolecule behaviors,
regulating a broad range of biological processes to perform
complex life activities.1−4 Taking nucleic acid−protein
interactions as an example, these interactions play pivotal
roles in fundamental cellular processes such as replication,
translation, transcription, and gene expression regulation.5−7

Hence, nucleic acid−protein interactions are essential for
normal cell function and the survival of any living organism.
Aptamers are single-stranded oligonucleotides evolved by in
vitro selection methods, capable of binding to proteins with
superior specificity and affinity.8−10 Aptamers interacting with
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proteins are able to reveal information regarding spatiotem-
poral behaviors of target proteins, further offering profound
insights into related biological processes.11,12 For instance,
utilizing their interactions with cytochrome c (Cyt c),
fluorescent aptamer probes can visualize the cytosolic release
of Cyt c, thus monitoring the apoptotic process.13,14 Therefore,
research on aptamer−protein interactions provides crucial
feedback to thoroughly understand and appropriately manip-
ulate vital life processes within biological systems, which is of
great significance in the biomedical field.
Aptamers interact with proteins via hydrogen bonding,

electrostatic interactions, hydrophobic interactions and van der
Waals forces.15−17 Changing the structure of aptamers can
tune their binding affinity toward target proteins.18−20 By way
of illustration, the introduction of hydrophobic amino-acid-like
side chains into aptamers can form additional hydrophobic
contacts, enhancing the interactions of aptamers with thrombin
dramatically and achieving highly sensitive detection of
thrombin.21−23 Notably, regulating the interactions between
aptamers and disease-related proteins allows modulation of
protein-mediated cell behaviors, assisting disease diagnosis,
treatment and pathological assessment.24−26 For example,
aptamers are modified with hydrophobic small-molecule
anticancer drugs to improve their interactions with target
proteins, facilitating selective cellular uptake and thereby
inhibiting tumor growth.27 The regulation of aptamer−protein
interactions thus serves as a universal platform not only for
realizing the highly sensitive and selective detection of
biomolecules, but also for boosting the discovery of disease
biomarkers and potential drug targets.
Recently, the development of analytical assays based on

aptamer−protein interactions has been greatly bolstered by in-
depth understanding of the aptamer−protein interactions,
including interaction sites, intensity, and mechanisms.28−32 As
plenty of groundbreaking work has been reported, many
reviews on the application of aptamers for protein detection
have also been published.22,33−37 However, there has not been
a systematic discussion about these analytical assays from the
perspective of regulating aptamer−protein interactions. This
review introduces various approaches to regulate aptamer−
protein interactions. We focus largely on synthetic aptamers
and their interactions with proteins, rather than aptameric
RNA transcripts expressed in cells.38−41 Subsequently, we
provide a comprehensive summary of methods for determining
structures of aptamer−protein complexes and for detecting the
interactions of aptamers with target proteins. Additionally, the
application of analytical assays based on the regulation of
aptamer−protein interactions in bioanalytical detection is also
systematically reviewed. We end with a discussion of
challenges and perspectives in this field, aiming to provide
guidance for disease diagnosis and drug development.

2. REGULATION METHODS OF APTAMER−PROTEIN
INTERACTIONS

Aptamers are a special class of single-stranded oligonucleotides
obtained by an in vitro selection process termed Systematic
Evolution of Ligands by EXponential enrichment (SELEX),
enabling binding to target proteins with high affinity and
specificity.42−44 The binding events are based on the
characteristic of aptamers forming unique three-dimensional
structures that allow specific interactions with target proteins,
including hydrogen bonding, electrostatic interactions, hydro-
phobic interactions, π−π stacking and van der Waals

forces.15−17 The characteristics of these interactions are
summarized in Table 1. Most aptamer−target protein

interactions are mediated by hydrogen bonding.45 In addition
to nucleic acid bases, phosphate groups also play an important
role in the formation of hydrogen bonding. The phosphate
groups in aptamers generally act as hydrogen bond acceptors,
and the side chains of proteins serve as hydrogen bond
donors.46,47 Besides, owing to the negatively charged
phosphate backbones, aptamers can attract the positively
charged surface of target proteins, thereby inducing electro-
static interactions.48,49 The hydrophobic interaction of
aromatic rings with the aliphatic side chains of proteins is
reported to be another force responsible for aptamer−target
protein interactions.23,50 In addition, aromatic rings are also
confirmed to participate in π−π stacking, mainly due to the
overlapping of π orbitals.51−53 The final important binding
interaction is the van der Waals force arising from the mutual
attraction of dipoles and induced dipoles.54 It has been
reported that the strength of van der Waals forces heavily
depends on the dimension of the interacting interface.51

Regulation of aptamer−protein interactions can distinguish
subtle differences in the structure and content of analytes,
achieving the sensitive and specific detection of biomole-
cules.37,55−57 Some studies have validated that changing the
structure of aptamers changes their interactions with
proteins.18−20 In this section, we will give a detailed discussion
about how to customize aptamer structures by sequence
design, nanostructure design and multifunctional integrated
design, thereby regulating aptamer−protein interactions.
2.1. Design of Aptamer Sequences
The main idea of aptamer sequence design is to transform their
spatial structures via the reformation of aptamer sequences,
thereby regulating the interactions between aptamers and
proteins. Generally, full-length aptamers derived from the
SELEX process are 70−130 nucleotides (nt) in length,
consisting of a random region (30−50 nt) and two fixed
primer regions.58−60 Only a small fraction of nucleotides in a
full-length aptamer, known as essential and supporting
nucleotides, play critical roles in the interactions with target
protein.61,62 The remaining nucleotides that do not support
aptamer−protein interactions are regarded as nonessential
nucleotides.63 These nonessential nucleotides not only
produce unnecessary steric hindrance but also increase
nonspecific interactions, affecting the affinity and specificity
of aptamers to a certain extent.64−66 Therefore, appropriately
truncating aptamers to eliminate nonessential nucleotides is
one of the important strategies to regulate aptamer−protein
interactions. To determine which nucleotides can be deleted,
analyzing the sequence and structure of aptamers is first

Table 1. Summary of the Interactions between Aptamers
and Proteins

Interaction type Main components that mediate the interaction

Hydrogen
bonding

The side chains of proteins and either the nucleic acid
bases or phosphate groups of aptamers

Electrostatic
interactions

The negatively charged phosphate backbones of aptamers
and the positively charged protein residues

Hydrophobic
interactions

The aromatic rings of aptamers and the aliphatic side
chains of proteins

π−π stacking Parallel aromatic rings of aptamers and proteins
van der Waals
forces

Atoms, molecules, and surfaces of aptamers and proteins
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required.67,68 In general, some available software algorithms,
such as ClustalW and Mfold, are applied to conduct multiple
sequence alignments or predict the secondary structure of
aptamers, thereby deducing the essential sequences for
interactions between aptamers and target proteins.63,69,70

Subsequently, the aptamers are rationally truncated on the
principle of preserving the required sequence. Many studies
have demonstrated the effectiveness of aptamer truncation
strategies. Macdonald et al. utilized the MFold to predict the
secondary structure of transferrin receptor (TfR) aptamer,
GS24 (64 nt), identifying the minimum sequence required to
GS24-TfR interactions.71 GS24 was finally truncated to a 14 nt
sequence, exhibiting a significantly enhanced binding affinity
for TfR. Several studies have demonstrated that special
secondary structures such as stem-loops are central to target
molecule recognition.72,73 Accordingly, elimination of non-
essential nucleotides in these regions can change the
accessibility of targets to aptamers, regulating aptamer−protein
interactions efficiently. Based on the predictive secondary

structures of 74 mer vimentin-binding aptamers (V3 and V5),
Costello and co-workers conducted aptamer truncations on the
stem-loop regions, resulting in seven truncated motifs with
different binding affinities (Figure 1A).72 Among them,
truncated aptamers with ∼40 mer showed the highest binding
affinity, revealing approximately 2-fold enhancements com-
pared with the original aptamers. In recent years, with the rapid
growth of computer science and computational biology,
researchers have also applied machine learning to the
identification and design of high-performance aptamers. In
2021, using affinity data of multiple full-length aptamers (∼80
nt) against neutrophil gelatinase-associated lipocalin (NGAL),
Bashir’s team trained machine learning models for affinity
prediction of de novo and experimentally derived aptamers.74

These machine learning models were used to identify core
sequences necessary for the aptamer−NGAL protein inter-
actions. On the basis of retaining the core sequence, the
authors designed truncated aptamers 70% shorter and with a 5-

Figure 1. (A) Secondary structures of selected 74-mer vimentin aptamers. Seven potential binding motifs are shown in red. Reprinted with
permission from ref 72. Copyright 2021 MDPI under CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/]. (B) Secondary structures (top)
and KD curves (bottom) of the full-length aptamer (purple line) and truncated aptamer (teal line). Adapted with permission from ref 74.
Copyright 2021 Springer Nature under CC BY 4.0 [http://creativecommons.org/licenses/by/4.0/]. (C) Illustration of engineering Myo-binding
split aptamers using AFM. (D) Binding probabilities of Myo and split aptamers cleaved at different sites. (C,D) Reprinted and adapted with
permission from ref 87. Copyright 2020 American Chemical Society. (E) Schematic illustration of the spike-protein binding divalent aptamer
DSA1N5 built with MSA1T (purple), MSA5T (teal), and T30 linker. Adapted with permission from ref 90. Copyright 2021 John Wiley and Sons.
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fold higher binding affinity than the original aptamers (Figure
1B).
When binding to target proteins, the conformation of

aptamers changes significantly to form various secondary
structures, such as hairpin loops, stem-loops, or pseudo-
knots.37,75 These structures play basic roles in contacting target
proteins. However, in complex substrates, aptamer conforma-
tional changes are also susceptible to environmental factors like
ions and pH, thus affecting their folding to the proper
secondary structures.76−78 To overcome this obstacle,
researchers have designed and constructed split aptamers.
Intact aptamers are split into two or more independent and
nonfunctional fragments.79 Only upon encountering target
proteins are split aptamers selectively assembled into the
specific binding conformations.80,81 This effectively avoids
unfavorable secondary structures and nonspecific interac-
tions.82,83 Moreover, split aptamers are much shorter than
intact aptamers, showing the good anti-interference ability to
steric hindrance.84 Consequently, splitting aptamers provides
an available strategy for regulating aptamer−protein inter-
actions. Li et al. divided an intact aptamer for vascular
endothelial growth factor (VEGF165) into two short fragments
and exploited single molecular force spectroscopy (SMFS) to
measure the interaction force of aptamers with VEGF165.

85

SMFS results demonstrated that no detectable signal was

observed in the absence of VEGF165. When VEGF165 was
present, split aptamers interacted specifically with VEGF165,
and the interaction force was approximately 20 pN higher than
that of intact aptamer−VEGF165. However, since binding
mechanisms of most aptamers to proteins are not well
understood, there are still few split aptamers reported so
far.86 To address this issue, researchers have developed
multiple methods to guide the engineering of split aptamers
in recent years. For instance, Li’s group constructed split
aptamers against myoglobin (Myo) with the help of atomic
force spectroscopy (AFM).87 As illustrated in Figure 1C, the
intact Myo-binding aptamer was first randomly cleaved into
split aptamer 1 and split aptamer 2 at different sites. Split
aptamer 1 and split aptamer 2 were then attached to the AFM
tip and gold substrate, respectively. Subsequently, the
interaction between Myo and split aptamers was investigated
using AFM, and three pairs of split aptamers that exhibited
high affinity and specificity for Myo in human serum were
successfully obtained (Figure 1D).
Apart from aptamer splitting, sequence splicing is also an

attractive strategy for regulating aptamer−protein interactions.
At present, a variety of linkage methods have been described to
splice two or more aptamers to construct multivalent aptamers,
thereby interacting with target proteins via multiple binding
sites.88 Shiang and co-workers constructed bivalent aptamers

Figure 2.Modifications on the ribose (A) and phosphate backbone (B) of the aptamers. (C) Schematic of an aptamer with combinations of double
modifications on dC and dU. Space-filling models of R groups as follows: Nap, 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxy; Pp, 5-[N-(phenyl-
3-propyl)carboxamide]-2′-deoxy; Moe, 5-[N-(1-morpholino-2-ethyl)carboxamide]-2′-deoxy; Tyr, 5-[N-(4-hydroxyphenyl-2-ethyl)carboxamide]-
2′-deoxy; and Thr, 5-[N-(S-2-hydroxypropyl)carboxamide]-2′-deoxy. R1 groups tested on dC were Nap and Pp (red lines), whereas R2 groups
tested on dU were Nap, Pp, Moe, Tyr, and Thr (blue lines). Adapted with permission from ref 113. Copyright 2017 Natl Acad Sciences under
PNAS Open Access License. (D) Molecular design of ZAP-1 aptamer derived from libraries containing P-Z base pairs (top) and conformational
modulation of integrin α3β1 by ZAP-1 binding (bottom). Reprinted with permission from ref 119. Copyright 2019 John Wiley and Sons.
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by coupling two thrombin-binding aptamers (TBA15 and
TBA29, which interact with positively charged exosites 1 and 2
of thrombin, respectively) onto Au nanoparticles.89 Compared
with free TBAs, these bivalent TBAs enhanced electrostatic
interactions with thrombin, exhibiting significantly improved
anticoagulant potency (ca. 50-fold). Zhang et al. chose two
aptamers, MSA1T and MSA5T, targeting SARS-CoV-2 spike
protein, and created divalent aptamers via a 30-mer
polythymidine (T30) linker linkage, as presented in Figure
1E.90 The obtained divalent aptamers had binding affinities for
spike proteins that were about 100- and 30-fold higher than
MSA1T and MSA5T, respectively.
To achieve excellent multivalent interactions, most strategies

for constructing multivalent aptamers need to identify two or
more aptamers that bind to different sites on the same target
protein and further optimize linkage methods, orientation, and
distance between these monovalent aptamers.91,92 However,
owing to the gradual loss of aptamers targeting weakly binding
sites during the selection process, almost all aptamers so far are
specific to the same binding site on the target protein, limiting
the widespread development of multivalent aptamers.93

Addressing this, Zhou and co-workers introduced DNA
nanostructures into conventional SELEX techniques and
exploited an approach to directly screen bivalent aptamers
with superior binding affinity.94 Each strand in the library was
designed as a single-strand DNA nanostructure, comprising
fixed sequences that self-fold to form the two-helix stem region
of the scaffold structure and two 20 nt random loop sequences.
The closed random loop regions were supposed to form many
complicated conformations to adequately interact with target
proteins. The scaffold structure could not only offer stable
structural support for the contact between two random loop
regions and target proteins, but also adjust the relative
orientation and distance between two aptamers, thus providing
the optimal linkage mode. By designing the scaffolded library
according to the size of thrombin, the authors identified via a
simple seven-round screening a group of extremely high-
affinity bivalent aptamers (KD ≈ 340 fM) that interact with two
different binding sites on thrombin. In conclusion, compared
with monovalent aptamers, multivalent aptamers can manip-
ulate the interaction interface between aptamers and target
proteins, further regulating aptamer−protein interactions.
Antibodies, conventional recognition molecules, are com-

posed of 20 different amino acids with a variety of spatial
structures.95,96 In contrast, the limited components of natural
nucleotides (A, G, C, T, or U) definitely restrict the structural
and functional diversity of aptamers.97,98 Introducing chemical
groups not found in natural nucleotides not only allows the
formation of aptamers with richer spatial conformations, but
also provides additional interactions between aptamers and
their target proteins.99,100 Therefore, strategies regarding
chemical modifications of aptamers are also well established
for modulating aptamer−protein interactions. Many conceiv-
able chemical modifications are not compatible with the
conventional SELEX process involving RNA polymerase
transcription and/or PCR depending on DNA polymerases.101

Such modifications therefore cannot be included in random
libraries and cannot be subjected to the selection process. This
is a major obstacle to optimizing chemical modifications
because ad hoc post-SELEX engineered modifications may or
may not be optimal. Ideally, modifications would be present in
the random library during the selection process, not added

later. This may provide new ideas for efficient aptamer
selection.
On the basis of the diverse modification position, chemical

modifications for aptamers can be divided into three
categories: modifications on sugar rings, modifications on
phosphates, and modifications on bases.102,103 As illustrated in
Figure 2A, modifications on sugar rings mainly involve 2′-
ribose modifications, including 2′-amino (2′-NH2), 2′-fluoro
(2′-F), 2′-O-methyl (2′-O−CH3), and so on.36,104−106 Much
evidence indicates that 2′-substitution on ribose moieties
affects sugar pucker conformation, further having an impact on
the tertiary structures of aptamers.107,108 Therefore, for the
same target proteins, aptamers with distinct sequences and
structures will be identified from nucleic acid libraries with
different 2′-ribose modifications. Comparatively, aptamers with
more stable conformations exhibit higher binding affinity to
their target proteins.109 For example, Pagratis performed the
selection process to obtain different 2′-modified aptamers
against keratinocyte growth factor (KGF) from libraries
containing modified RNA with 2′-NH2 or 2′-F pyrimidines.110
Since the intramolecular helices formed by 2′-F RNA are
substantially stronger than that of 2′-NH2 RNA, the 2′-F
modified aptamers have more rigid structures. Thus, 2′-F
modified aptamers exhibited binding affinity (KD ≈ 0.3−3 pM)
for KGF superior to 2′-NH2 modified aptamers (KD ≈ 400
pM). The phosphate moieties are typically well exposed on the
surface of aptamer, allowing easy access to the target
proteins.111 Hence, common modifications on phosphate
linkages presented in Figure 2B play a crucial role in regulating
aptamer−protein interactions. Studies have shown that the two
nonbridging oxygen atoms of phosphate groups in the aptamer
backbone commonly interact with amino acid side chains of
proteins via hydrogen bonding.111 By replacing two non-
bridging phosphate oxygen atoms by sulfur to yield a
phosphorodithioate (PS2) linkage, Abeydeera et al. synthe-
sized chemically modified aptamers targeting VEGF and
thrombin, respectively.111 Due to the introduction of hydro-
phobic interactions by sulfur substitution, PS2-modified
aptamers had an approximately 1000-fold increase in affinity
toward target proteins compared with unmodified aptamers.
Indeed, some modifications not only bring remarkable
enhancements in target affinity, but may also increase off-
target affinities.38,97

Modifications on bases, that is, base substitutions or addition
of unnatural bases, are widely studied chemical modification
strategies. In general, base substitutions refer to replacing the
5′-position of pyrimidines with hydrophobic, hydrophilic, or
charged groups, thereby introducing additional interactions
into aptamer−protein interactions.112 Gawande’s group
incorporated numerous hydrophobic and hydrophilic groups
that resemble similar side chains in proteins into nucleic acid
libraries.113 Figure 2C shows various substitutions at 5′-
position of cytidine (Nap and Pp) and uridine (Nap, Pp, Moe,
Tyr, and Thr). Multiple doubly modified aptamers targeting
proprotein convertase subtilisin/kexin type 9 (PCSK9), a
representative human therapeutic protein target, were derived
from libraries with pairwise combinations of these modifica-
tions. Compared with unmodified and single-modified
aptamers, these doubly modified aptamers showed a significant
improvement in affinity, in particular a hydrophobic mod-
ification (Nap or Pp) on deoxyuridine (dU) paired with Tyr-
deoxycytidine (Tyr-dC).
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Moreover, indole and methyl groups have also been applied
in base modifications to modulate interactions between
aptamers and target proteins. Dolot and colleagues synthesized
5-(indolyl-3-acetyl-3-amino-1-propenyl)-2-deoxyuridine (W)
and 5-(methyl-3-acetyl-3-amino-1-propenyl)-2-deoxyuridine
(K) as deoxythymidine (T) analogues.114 Substituting T at
position 4 of TBA15 by these T analogues afforded T4W and
T4K. Compared with native TBA15, T4W and T4K
introduced additional hydrophobic and hydrogen bonding
interactions, respectively, promoting a significant increase in
their binding affinity toward thrombin. Yoshikawa and Rangel
introduced indole groups into aptamer screening.115 The
indole moieties of base-modified aptamers offered stable
hydrophobic effects for aptamer−glycoprotein interactions,
achieving the recognition and differentiation of specific protein
glycoforms. Furthermore, multiple artificial base pairs, such as
P{2-amino-8-(1-β-D-2-deoxyribofuranosyl)-Imidazo[1,2-a]-
1,3,5-triazin-4(8H)one}−Z[6-amino-5-nitro-3-(1-β-D-2-deox-
yribofuranosyl)-2(1H)-Pyridone] and Ds {7-(2-thienyl)-
imidazo[4,5-b]pyridine}-Px(2-nitro-4-propynylpyrrole), have
also been developed to increase the chemical diversity of
nucleic acid libraries and regulate aptamer−protein inter-
actions.9,19,116 Among them, the P−Z base pair can lead to
additional interactions of the nitro group on Z with
proteins,117,118 while the highly hydrophobic Ds base will
strengthen interactions between aptamers and hydrophobic
cavities in target proteins.9 Our group selected the aptamer
that targets integrin alpha3 (named ZAP-1) from nucleic acid
libraries containing P−Z base pairs.119 With high affinity and
selectivity, ZAP-1 could effectively reduce integrin α3β1−
laminin binding, thus inhibiting α3β1-mediated adhesion and
migration of tumor cells (Figure 2D). Overall, owing to the
improved chemical and structural diversity, chemically
modified aptamers possess the capability to effectively regulate
aptamer−protein interactions, further manipulating biomolec-
ular behaviors.
2.2. Design of Aptamer Nanostructures

The binding affinity and specificity of aptamers toward target
proteins rely on their unique three-dimensional folded
conformations.120,121 In recent years, researchers have focused
on regulating aptamer−protein interactions in complex

biological milieu to modulate diverse biological processes.
However, in the crowded living environment, the folding
process and conformational stability of aptamers are
susceptible to interference from nucleases and nonspecific
interactions with other biomolecules, thereby affecting the
stable binding of aptamers to target proteins.92,122 Therefore, it
becomes difficult to regulate aptamer−protein interactions in
living systems. As artificially synthesized nucleic acids,
aptamers have been used as exceptional molecular building
blocks for nanostructures, mainly due to their predictable and
programmable conformations as well as intra- and intermo-
lecular Watson−Crick base-pairing rules.51,123,124 Several
reports reveal that by utilizing convenient sequence designs
and reliable assembly methods, all termini of aptamers can be
stably encapsulated in nanostructures to restrict their flexibility,
significantly enhancing the conformational stability of
aptamers.121,124−126 Meanwhile, the self-assembly of nano-
structures driven by a number of noncovalent interactions is
also capable of bringing many additional interactions, thus
increasing the structural complexity and diversity of nano-
structures.127,128 Besides, customizing aptamer nanostructures
can control the number, density and spatial arrangement of
interaction sites, providing more possibilities for regulating
aptamer−protein interactions.129 In the past few decades,
researchers have designed aptamer nanostructures varying in
size and shape to effectively regulate aptamer−protein
interactions under physiological conditions.
According to the dimensions of nanostructures, aptamer-

based nanostructures can be divided into one-dimensional
(1D), two-dimensional (2D), and three-dimensional (3D)
nanostructures. Self-assembled 1D aptamer nanomaterials
generally have a linear shape, such as nanowires, by placing
free aptamers in designated distances and orientations along
1D compact DNA nanostructures.129 Due to the introduction
of multiple binding sites, constructing aptamer nanowires can
effectively regulate aptamer−protein interactions via multi-
valent interactions.130−132 Xue and Zhang connected multiple
DNA double helices together to build a linear core backbone
that exposed sequences complementary to the termini of
aptamers at specific distances.133 Then, targeting aptamers
were regularly anchored perpendicularly on the core surface to

Figure 3. Stepwise assembly of 1D aptamer nanowires (A), 2D aptamer nanonetworks (B), and 3D aptamer nanoflowers (C). PSH and ASH
denote the palindromic-self-hybridization and aptamer-self-hybridization, respectively. (A) Adapted with permission from ref 133. Copyright 2020
John Wiley and Sons. (B) Adapted with permission from ref 135. Copyright 2020 Elsevier.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00377
Chem. Rev. 2023, 123, 12471−12506

12476

https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig3&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00377?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


form a periodically ordered core/shell aptamer nanowire
(Figure 3A). These nanowires effectively hid all termini of
aptamers and displayed a large number of protein-binding
sites, resulting in significantly enhanced nuclease-degradation
resistance and binding affinity in the crowded intracellular
milieu. Li et al. utilized hybridization chain reaction (HCR) to
generate a DNA scaffold. The HCR used here contained three
components: biotin-modified hairpin monomers (H1 and H2)
and a DNA initiator strand.134 Subsequently, biotinylated
aptamers were coupled to the scaffold via streptavidin−biotin
affinity interaction, thus forming the aptamer nanocentipede
structure. Aptamer nanocentipedes exhibited higher selectivity
and affinity than those of free aptamers. Additionally, the

binding affinity of aptamer nanocentipedes to target proteins
could be adjusted by the length of HCR products.
Compared with 1D aptamer nanostructures, 2D nanostruc-

tures further expand the effective territory for immobilization
of aptamers, thus enabling better regulation of their interaction
with target proteins. For example, Wang’s team extended the
sequence of aptamer-targeting protein tyrosine kinase 7
(PTK7) to confer three functional regions, including an
aptamer segment, a terminal palindrome, and a segment
complementary to DNA linker.135 As shown in Figure 3B, 2D
aptamer nanonetworks were self-assembled from the extended
aptamers and DNA linkers by utilizing DNA-linker-based
horizontal hybridization and vertical self-hybridization. Even-
tually, the binding affinity of nanonetworks is increased by 3-

Figure 4. (A) Fabrication of aptamer−AuNPs conjugate with different surface coverage of aptamer and binding curves of these obtained aptamer−
AuNPs conjugates to IFN-γ. Reprinted with permission from ref 148. Copyright 2021 American Chemical Society. (B) Inhibition mechanism and
effects of SNAP conjugates against authentic SARS-CoV-2 infection. Adopted with permission from ref 149. Copyright 2021 American Chemical
Society. (C) Fabrication of Apt1−Lip and binding affinity curves of Apt1−Lip to CD44. Adapted with permission from ref 159. Copyright 2015
American Chemical Society. (D) Fabrication and equilibrium dissociation constants of cb-ApDCs with accurate tunability of drug ratios. Adapted
with permission from ref 163. Copyright 2019 John Wiley and Sons.
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fold owing to the multivalent binding effect. With the rapid
development of DNA nanotechnology, numerous 3D aptamer
nanostructures have been designed and constructed to further
promote the tunability of the interaction between aptamers
and target proteins. Roloff and colleagues designed TBA−
polymer amphiphiles that assembled into uniformly sized
nanomicelles.122 These micellar aptamers retained their native
secondary structure in human serum and showed stronger
inhibitory effects in blood clotting assays when compared to
free aptamers. Lv’s group described a comprehensive protocol
for preparing aptamer nanoflowers via rolling-circle replication
(RCR) of a designed template, as illustrated in Figure 3C.136

The authors used aptamer Sgc8c, which can specifically
recognize PTK7, as the model, designed the template and
primer sequences reasonably, and employed RCR to generate
long DNA building blocks containing multiple Sgc8c aptamers.
Subsequently, these building blocks were gradually assembled
to form Sgc8c-integrated nanoflowers by DNA liquid
crystallization. Based on the multivalent effect, aptamer
nanoflowers were endowed with higher affinity and selectivity
than free aptamers. In conclusion, aptamer nanostructures can
not only improve the conformational stability of aptamers, but
also introduce multivalent interactions, opening a promising
avenue for regulating aptamer−protein interactions.
2.3. Multifunctional Integrated Design of Aptamers

As aptamer technology and coupling technology continue to
develop, aptamers can be coupled with a variety of functional
carriers to form numerous composite materials with an
increasingly diverse range of structures and functions.137−140

Multifunctional integrated design strategies effectively merge
the advantages and characteristics of functional carriers and
aptamers while circumventing their disadvantages, providing a
potential means to regulate aptamer−protein interactions. In
this part, we give a detailed discussion about how functional
modifications of aptamers affect aptamer−protein interactions.
As the most common functional carriers, inorganic nano-

materials possess unique properties such as large surface-area-
to-mass ratio and easy biofunctionalization, making them
capable of loading a number of aptamers to construct
aptamer−inorganic hybrid nanomaterials.141−143 The loading
of aptamers on the one hand endows inorganic nanomaterials
with specific recognition ability and improved biocompati-
bility.144−146 On the other hand, inorganic nanomaterials can
modulate the conformational stability, density, and number of
loaded aptamers, thereby regulating the blood circulation
times, nuclease resistance, and the ability to interact with
proteins.129,147 Chen’s group immobilized different amounts of
aptamers specific for interferon-gamma (IFN-γ) on the surface
of gold nanoparticles (AuNPs), and investigated the effect of
surface coverage of aptamer on the aptamer−target protein
interactions (Figure 4A).148 The binding affinity between
aptamer−AuNPs conjugates and IFN-γ enhanced 10-fold
when increasing the number of aptamers from an average of
9.6 to 258 per particle. This indicated that the higher the
surface coverage of aptamers on nanoparticles, the more
protein binding sites will be provided, thus promoting the
interaction between aptamers and proteins. For SARS-CoV-2
and associated mutant strains, Sun and Liu engineered a
spherical cocktail neutralizing aptamer−gold nanoparticle
(SNAP) to block the interaction between the receptor-binding
domain (RBD) of trimeric-spike protein and host ACE2.149 As
presented in Figure 4B, multiple aptamers targeting distinct

epitopes on RBD were anchored on the same AuNP with high
density, resulting in multivalent effects that significantly
improved the binding affinity against spike proteins. Moreover,
SNAP can simultaneously interact with three nonoverlapping
epitopes on RBD, thus producing potent virus inhibition
efficacy. More importantly, attributed to the inherent features
of inorganic nanomaterials such as optical and electronic
properties, inorganic nanomaterial−aptamer conjugates are
able to serve as highly sensitive biosensor platforms.141,150 This
platform can convert information about the distribution and
content of biomolecules into detectable optical or electrical
signals, greatly facilitating the wide application of regulating
aptamer−protein interactions in ultrasensitive biomolecule
detection. Based on the unique optical properties of AuNPs,
Wang et al. constructed TBA−AuNPs conjugates for simple,
rapid, and ultrasensitive colorimetric detection of thrombin.151

TBA−AuNPs conjugates showed excellent sensing perform-
ance in complex biological samples, and the colorimetric
signals enhanced with the increase of thrombin concentrations
in human plasma.
Considering that organic nanoparticles have excellent

loading capacity, there is no doubt that they can also be
utilized as functional carriers coupled with aptamers.152−155

Hence, the integration of organic nanoparticles with aptamers
provides an efficient direction for the regulation of aptamer−
protein interactions by changing the loading density and
quantity of aptamers. Different from inorganic nanoparticles,
organic nanoparticles such as liposomes possess inherently
high biocompatibility and low toxicity.156−158 This further
promotes the regulation of aptamer−protein interactions in the
physiological environment using multifunctional integrated
design strategies. Alshaer et al. constructed aptamer−liposome
bioconjugates (Apt1-Lip) by integrating 2′-F-pyrimidine-
containing RNA aptamer (Apt1), selected against CD44
receptor protein, to the surface of PEGylated liposomes
using the thiol−maleimide click reaction (Figure 4C).159 By
inducing multivalent interactions with CD44, Apt1−Lip was
shown to express higher binding affinity (KD ≈ 6 nM)
compared to the affinity of free Apt1 (KD ≈ 21 nM). In
addition, in crowded cellular environments, Apt1−Lip targeted
CD44-expressing tumor cells with high specificity and
selectivity, showing its great potential for versatile in vivo
application. Farokhzad and colleagues covalently linked
aptamers targeting prostate-specific membrane antigen
(PSMA) to PEGylated polylactic acid (PLA) nanoparticles
by EDCI reaction. The obtained bioconjugates showed 77-fold
enhanced binding to PSMA-expressing cells compared with the
control group.160

Apart from nanoparticles, drug molecules are attractive
functional carriers for aptamers.161−163 Given that most drug
molecules are rich in nonpolar moieties, drug-integrated
aptamers usually introduce additional hydrophobic effects in
their interactions with proteins, thus affecting aptamer−protein
interactions.164,165 Meanwhile, the targeting ability of aptamers
enables drug molecules to be delivered to particular sites to
exert effects. Zhou and Wang prepared circular bivalent
aptamer−drug conjugates (cb-ApDCs) with accurate tunability
of drug ratios for drug combination cancer therapy.163 As
illustrated in Figure 4D, aptamer XQ-2d specifically recogniz-
ing transferrin receptor 1 was chosen as a model, and DBCO-
functionalized XQ-2d was conjugated with various azide-
functionalized drugs to form ApDCs with different drug
combinations via a click reaction. Then, two ApDCs
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monomers were cyclized to generate a variety of cb-ApDCs
based on Watson−Crick base-pairing. Introducing additional
hydrophobic interactions, the conjugation of hydrophobic
drugs significantly enhanced the binding affinity of XQ-2d that
depended on the number of bound hydrophobic drugs. Due to
their high affinity and specificity, cb-ApDCs showed excellent
selective cytotoxicity, achieving good synergistic effects to
inhibit cancer cell growth by tuning the drug ratios.
Taken together, by combining the unique properties of

functional carriers with aptamers, the multifunctional inte-
grated design of aptamers may offer an effective methodology
to regulate aptamer−protein interactions in biosensing, disease
diagnosis, and treatment.

3. DETECTION METHODS OF APTAMER−PROTEIN
INTERACTIONS

Specific binding of aptamers to target proteins is mediated by
many interactions.166 The strength, kinetic, and thermody-
namic parameters associated with these interactions are critical
components that define aptamer−protein binding events. The
interaction strength relates to the selectivity of aptamers for
target proteins.167,168 Kinetic analysis can provide association
(kon) and dissociation (koff) rate constants to evaluate the
stability of aptamer−protein interactions.169,170 Thermody-
namic analysis of aptamer−protein systems is usually carried
out to acquire enthalpy changes (ΔH) and entropy changes
(ΔS), showing instructive implications for understanding the
molecular principles of aptamer−protein interactions.171,172
Therefore, exploring basic binding parameters of aptamer−
protein interactions can help to optimize or develop regulation
strategies, further promoting the development of aptamer−
protein interactions in analytical fields. More recently,
numerous methods for characterizing aptamer−protein inter-
actions have been exploited, and these methods will be
introduced in this chapter.
3.1. Optical Assay

The optical signals are closely related to the optical properties
of the analytical interface, including refractive index, scattering
intensity, interference pattern, polarization response, and
fluorescence resonance energy transfer (FRET).173,174 The
aptamer−protein interactions will change the optical properties
of the analytical interface, resulting in the variation of optical
signals.175−180 Hence, many optical methods have been
rationally designed to monitor changes of various optical
effects upon the binding of aptamers to target proteins,
acquiring detailed information about aptamer−protein inter-
actions (Table 2).
Surface plasmon resonance (SPR) is one of the broadly

applied techniques for studying aptamer−protein interac-
tions.181−184 The partner with the larger mass is usually in
the flow in SPR, with the smaller partner immobilized, to
maximize the change.185−188 The kinetic parameters (kon and
koff) and equilibrium dissociation constant (KD) of aptamer−
protein interactions can be calculated based on time-depend-
ent SPR signals during flow.188,189 Li et al. constructed a five-
component RNA aptamer microarray by modifying five protein
factor IXa (fIXa)-binding aptamers with different structures
onto a gold surface.190 According to the SPR signals from fIXa
binding at different aptamer array elements, the optimal
aptamers that specifically interact with fIXa are selected out of
the five RNA aptamer components. However, SPR also suffers

from some limitations, such as sensitivity to temperature and
difficulty in distinguishing nonspecific adsorption.191

Surface-enhanced Raman scattering (SERS) is a surface-
sensitive spectroscopic technique that can provide information
on the process of aptamer−protein interactions at the
analytical interface. In SERS measurements, aptamers are
usually adsorbed on the rough surface of nanostructured
metallic particles (typically gold, silver, and copper) to further
enhance the Raman scattering, and the obtained SERS signals
are closely associated with aptamer structures.192−194 Ap-
tamer−protein interactions are reported to usually cause
changes in aptamer structures.180,195 Hence, the SERS
spectrum of aptamers attached to the rough metal surface
will alter when binding to target proteins, thus reflecting the
interaction of aptamers with proteins. For example, Muham-
mad’s group built an AuNPs array-based SERS sensor to
investigate the interaction between aptamer and interleukin-6
(IL-6).196 A DNA aptamer adhered to the AuNPs array would
change its conformation upon binding to target IL-6 in serum,
thus inducing obvious alterations in the SERS spectrum.
Another optical method that requires the immobilization of

one interaction partner is Biolayer interferometry (BLI).197,198

Aptamers are covalently functionalized onto the surface of a
fiber-optic biosensor.199 Upon white light illumination, the two
interfaces of optical film layer at the sensor tip will generate
two reflected beams that are superimposed to form an
interference spectrum.200,201 The association and dissociation
of aptamers with target proteins can cause changes in the
thickness and density of the film, creating a wavelength shift of
the interference spectrum.202,203 By the real-time monitoring of
the wavelength shift, BLI is capable of obtaining abundant
information about aptamer−protein interactions, including
steady-state affinity, kinetic, and thermodynamic parame-
ters.175

As one of the main optical properties of analytical interface,
variations in polarization can also be utilized to indicate
aptamer−protein interactions. Fluorescence anisotropy (FA)/
fluorescence polarization (FP) assay can monitor the
interactions between fluorescently labeled aptamers and target
proteins by measuring polarized fluorescence emission of the
fluorophores under polarized excitation light.204 When
fluorescently labeled aptamers bind to proteins, increased
molecular volume and restricted rotation of fluorophore will
cause an enhancement in FA/FP signals.205 Interestingly,
monitoring the FA/FP signal upon the interaction between
aptamer labeled with fluorescein at specific sites and proteins
can further infer the binding sites on aptamers.206 For instance,
to identify the binding nucleotide sites of aptamers interacting
with Immunoglobulin E (IgE), Zhao and colleagues con-
structed a series of aptamer probes with a single FAM label at
different individual nucleotides.207 Multiple possible close-
contact nucleotide sites of aptamer were found by detecting
the FA response of aptamer−IgE complexes. Concisely, these
close-contact site-labeled aptamers showed high FA signals due
to the confined local rotation of FAM, while distant site-
labeled aptamers only produced weak signals. Besides, proteins
and nucleic acids exhibit differential absorption of left and right
circularly polarized light owing to the presence of asymmetric
carbons in amino acid residues and ribose.29,208 Based on the
circular dichroism (CD) of proteins and aptamers, scientists
developed CD spectroscopy to study aptamer−protein
interactions by monitoring CD spectra upon binding. Never-
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theless, CD technology also has certain limitations, most
notably the stringent sample preparation requirements.46

The FRET-based fluorescence technique is also an
important optical assay for monitoring aptamer−protein
interactions, allowing direct transduction of information on
aptamer−protein interact ions into alterat ions in
FRET.176,209,210 Taking the molecular beacon probe (MB) as
an example, a fluorophore and a quencher are usually modified
at both ends of the aptamer that possess a stem-loop structure,
respectively.211 In the absence of the target protein, MB
maintain a closed stem-loop structure to keep the fluorophore
and quencher in close proximity, allowing quenching to occur
by FRET,212,213 whereas the closed stem-loop structure of MB
may be unraveled upon binding to the target protein.214 The
fluorophore is spatially separated from the quencher to
produce a bright fluorescence signal.215 By utilizing MBs,
researchers have studied specific interactions between
aptamers and various proteins, such as thrombin, platelet-
derived growth factor (PDGF-BB), Tat protein of HIV-1, and
so on.216−218 Additionally, unique optical properties make
optical nanomaterials another excellent candidate to develop
optical assays.219 By way of illustration, Ghosh’s group
synthesized DNA aptamers targeting glycated albumin (GA)
with a quantum dot attached at one end and gold nanoparticle
quencher at the other end.220 Without the addition of GA, the
aptamer folded to a hairpin loop structure and the quantum
dot fluorescence was quenched by energy transfer to the gold

nanoparticle. With increasing GA concentration, an enhance-
ment in photoluminescence was observed due to the opening
of the aptamer hairpin loop.
3.2. Electrical Assay

Aptamers can be easily immobilized on various electrode
surfaces by utilizing molecular modification strategies.221−223

The aptamer−protein interactions on the electrode interface
can induce electron transfer in the system, resulting in changes
in electrical signals such as current, potential and impe-
dance.224,225 As the most direct method for electron transfer
characterization, electrical methods can quantify interactions
between aptamers and proteins by measuring changes in
electrical signals.226,227 Accordingly, numerous electrical
methods have been developed, such as differential pulse
voltammetry (DPV), alternating current voltammetry (ACV),
cyclic voltammetry (CV), square wave voltammetry (SWV),
electrochemical impedance spectroscopy (EIS), and ampero-
metric detection.228−233 In this section, we will display various
electrical assays based on different detection principles for
analyzing aptamer−protein interactions.
Emil Palecěk revealed, for the first time, the inherent

electrochemical activity of nucleic acids by showing reduction
processes close to −1.4 V (vs SCE) of adenine and cytosine
residues on mercury electrodes.234 Furthermore, the electro-
chemical oxidation of guanine and adenine residues was
observed on carbon and gold electrodes. These findings make

Figure 5. Schematic illustration of electrical assays based on (A) conformational changes of aptamers, (B) changes in the behavior of electroactive
molecules, (C) electrical conductivity of nanomaterials, and (D) catalytic activity of nanomaterials. (C) Reprinted with permission from ref 260.
Copyright 2014 American Chemical Society. (D) Reprinted with permission from ref 261. Copyright 2019 American Chemical Society.
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it possible to transduce aptamer−protein interactions into a
detectable electronic signal using intrinsic aptamer electro-
activity-based approaches. Inspired by that, Rodriguez
modified aptamers against lysozyme on the surface of a carbon
paste electrode and monitored changes in electrical signals
after the addition of lysozyme utilizing the SWV technique.235

They successfully translated the aptamer−lysozyme interac-
tions into the decrease in the guanine and adenine electro-
oxidation signals. However, electrical techniques based on
intrinsic aptamer electroactivity are usually restricted to the use
of mercury electrodes and carbon electrodes, hindering their
further development in analytical fields.
Thanks to the property of easy modification, aptamers are

able to covalently or noncovalently link to a variety of
electroactive molecules, thus coupling aptamer−protein
interactions to the efficiency of electron transfer between the
electroactive molecule and the electrode.236,237 According to
the changes in electrical signals, the electroactive molecule-
based electrical assays can be divided into two categories: one
depends on the conformational transition of aptamers upon
binding to their target proteins; the other relies on changes in
the behavior of electroactive molecules initiated by aptamer−
protein interactions. For the electrical detection methods based
on conformational changes of aptamers, electroactive mole-
cules such as methylene blue (MB) and ferrocene (Fc) are
usually modified at the free end of the aptamers immobilized at
the electrode surface (Figure 5A).238,239 Upon interacting with
proteins, conformational changes of the aptamers will alter the
distance of the electroactive molecules to the electrode
surface.240,241 Correspondingly, the efficiency of electron
transfer can also be influenced, resulting in a decrease or
increase in the current.242−244 For example, Li and co-workers
covalently attached prostate-specific antigen (PSA)-binding
aptamers labeled with MB to the gold electrode. In the absence
of PSA, the intrinsically flexible conformation of the aptamers
increased the possibility of collision between MB and the
electrode surface, resulting in fast electron transfer kinetics.245

After adding PSA, aptamer−PSA interactions induced
aptamers to switch conformation, hampering the electron
transfer between MB and the electrode surface. The authors
applied the SWV technique to translate electron transfer
kinetics alterations into the current changes, further obtaining
the binding affinity of the aptamer−PSA interactions. Curti
and Idili both employed AttoMB, an MB derivative, as an
electrochemical indicator to modify the free end of aptamers
that specifically bind to SARS-CoV-2 spike protein.246,247

These two pieces of research enabled the monitoring of
aptamer−SARS-CoV-2 spike protein interactions by short-
ening or lengthening electron-transfer distances via conforma-
tional changes of the aptamers, respectively. It is reported that
MB is also known as DNA intercalator.248,249 Thus, Bang et al.
designed and constructed a hairpin-forming beacon aptamer
that specifically binds to thrombin, and MB was intercalated
into the double-stranded DNA domain of the beacon
aptamer.250 The interaction between thrombin and the beacon
aptamer induces the opening of the hairpin structure, and
subsequently the intercalated MB is released, resulting in a
decrease in electrical current intensity in the voltammogram.
Another class of electrical technique is associated with the
behavior of electroactive molecules instead of the conforma-
tional transition of aptamers, as illustrated in Figure 5B. In this
method, the changes of electrical signals depend on the
electrostatic attraction or repulsion of aptamers to electroactive

molecules with different charging properties before and after
aptamer−protein interactions.251 For instance, positively
charged MB (a small organic molecule) can interact with
negatively charged proteins, forming stable complexes.252,253

Therefore, the formation of protein−MB complexes makes an
increased redox current when target proteins bind to the
aptamers immobilized at the electrode surface. According to
the aforementioned principle, Hianik’s group took advantage
of CV and DPV methods to record the current change,
realizing the detection of aptamer−thrombin interactions.254
Metal−organic complexes are also often designed as electrical
signal reporters for electrical assays attributed to their good
chemical stability and strong redox responses.255 Negatively
charged aptamers will repel the negatively charged metal−
organic complexes, such as [Fe(CN)6]4−/3−, in turn, hindering
electron transfer between electroactive molecules and the
electrode surface.256 In the presence of positively charged
target proteins, interactions of aptamers with target proteins
can switch the electrode surface charge, thus decreasing the
electron transfer resistance.257 In light of the above-mentioned
phenomena, aptamer−protein interactions can be monitored
by utilizing the electrochemical impedance spectroscopy
technique to detect changes in impedance before and after
adding to the target proteins.258 Positively charged organo-
metallic complexes can bind to aptamers immobilized on the
electrode via electrostatic interactions, generating CV
responses. In the presence of target proteins, aptamer−protein
interactions block the binding of the cationic electroactive
reporters with the aptamers, resulting in significant changes in
the CV response.
With rapid developments in nanochemistry, the application

of nanomaterials sparks a new idea for the electrical detection
of aptamer−protein interactions. For example, Maehashi’s
group fabricated a carbon nanotube field-effect transistor
(CNT-FET) device to monitor the interaction process
between aptamers and immunoglobulin E.259 Moreover,
nanopore-based tunable resistance pulse sensing (TRPS)
technology has been developed to accurately determine the
concentration, size, and surface charge of nanoparticles.
Billinge et al. immobilized aptamers on the surface of
superparamagnetic beads and then incubated these beads
with thrombin proteins (Figure 5C).260 Once bound to
proteins, aptamers undergo conformational changes and lead
to the shielding of the polyanion backbone. Thus, information
about aptamer−thrombin interactions, such as binding affinity,
can be obtained by monitoring variations in translocation time
and pulse frequency of particles traversing the nanopore in real
time. Zhang et al. conjugated Pt nanoparticles (PtNPs) with
the platelet-derived growth factor (PDGF) recognition
aptamer to inhibit the electrocatalytic oxidation of hydrazine
(N2H4) by PtNPs.

261 As shown in Figure 5D, in the presence
of PDGF, the stronger binding between the aptamer and the
PDFG disturbs the aptamer/PtNPs conjugates. Subsequently,
the electrocatalytic performance of PtNPs is recovered and
PtNPs further catalyzes oxidation of N2H4 to form N2, thereby
providing a quantitative current response for the aptamer−
PDGF interaction.
Collectively, correlating the signaling mechanism of

electrical detection with aptamer conformation allows
variations in electrical signals to arise exclusively from aptamer
conformational change induced by protein binding. This
effectively eliminates the interference of nonspecific inter-
actions from other biomolecules. In addition, owing to their
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excellent electrical conductivity and catalytic activity, nanoma-
terials can be employed as high-performance electrode-
supporting materials, electroactive labels, and catalytic
labels.262−264 The introduction of nanomaterials enables
more efficient conversion of information on aptamer−protein
interactions into electrical signals, providing a more sensitive
electrical detection platform for analysis of the aptamer−
protein interactions.
3.3. Biological Assay

As synthetic “chemical antibodies”, aptamers have a number of
unique advantages over antibodies.34,51,265 Since aptamer
production is often a chemical process, it not only eludes the
batch-to-batch variation but also reduces production costs.266

Thus, unlike antibodies, aptamers can be more facile to modify
at premeditated sites and synthesized on a large scale.267

Moreover, aptamers possess excellent chemical stability.268

After thermal denaturation, aptamers can refold into their
native conformation to be reused, whereas the denaturation
process of antibodies is irreversible.269 These advantages
enable aptamers to be contemplated as antibody replacements
and promising protein affinity reagents to construct a variety of
biological methods, such as enzyme-linked aptasorbent assay,
immunoprecipitation, and others, for detecting aptamer−
protein interactions. Each approach owns distinct superiorities
and limitations (Table 3).
Enzyme-linked immunosorbent assay (ELISA) is one of the

important detection techniques in biomedicine, converting the
information of antibody−antigen interactions into visually
detectable color change.268,270 In 1996, Drolet introduced
aptamers into ELISA for the first time to replace antibodies,
developing an enzyme-linked aptamer assay (ELAA).271 The
accuracy and specificity of ELAA were analyzed to show
equivalence to the typical ELISA. Subsequently, ELAA has
been extensively studied to detect aptamer−protein inter-
actions. Almeida et al. selected aptamers against zika virus
nonstructural protein 1 (ZIKVNS1), termed ZIKV60, and
performed ELAA to analyze ZikV60-ZikVNS1 interactions.272

Specifically, ZIKVNS1 was incubated with horseradish
peroxidase (HRP)-labeled ZIKV60 at different concentrations,
followed by adding 3,5,3′,5′-tetramethylbenzidine (TMB) to
initiate colorimetric reactions. Based on measurements of
absorbance at 450 nm, the saturation−binding curve was
plotted and showed that ZIKV60 presented a high binding
affinity to ZIKVNS1 with a KD value of 2.28 ± 0.28 nM.
Immunoprecipitation (IP) is a classical method for protein

detection based on antibody−antigen interactions.273,274

Antibodies against target proteins are preimmobilized on
insoluble supports, such as agarose beads, and then incubated
with cell lysates containing the target proteins to form
antigen−antibody immune complexes.275 Subsequently, im-
mune complexes are eluted from the supports for further
property analysis.275 Studies have shown that aptamers
represent a viable alternative to antibodies on insoluble
supports, allowing the utilization of IP assay for analyzing
aptamer−protein interactions.276,277 For example, to demon-
strate the interaction of heat shock protein 70 (HSP70, a
serous ovarian cancer biomarker) with aptamers (Tx-01), Hsu
and co-workers performed an IP assay using Tx-01 aptamer-
coated magnetic beads.278 Besides, the pull-down assay is also
a bioanalytical technique that requires solid-phase sup-
ports.279,280 Proteins that interact with target proteins are
preimmobilized as bait proteins to recognize and capture target T
ab
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proteins for investigating protein−protein interactions.281,282
Likewise, the aptamer−protein interactions can be detected by
replacing the bait proteins with aptamers.10,283

In addition, to reveal the critical regulatory role of nucleic
acid−protein interactions within the organism for life
processes, several biological methods have been developed to
study the interactions between DNA/RNA and proteins,
including electrophoretic mobility shift assay (EMSA) and
footprinting assay, among others (Table 3).284−286 These
conventional assays have, in turn, been further extended for the
analysis of aptamer−protein interactions. EMSA is a common
analytical technique to investigate aptamer−protein interac-
tions based on the mobility differences of different molecules
in the gel matrix.287 Aptamers are polyanions and have strong
electrophoretic mobility.187 Comparatively, the net charges
and molecular size of proteins greatly render their movement
in the gel matrix greatly impeded.29 Aptamer−protein
complexes thus possess a slower electrophoretic mobility
compared to free aptamers.288 Consequently, information
about aptamer−protein interactions, such as the interaction
strength, can be obtained by observing the shift of bands.289 As
another classical biological technique, the unique advantage of
footprinting assay is its ability to report the accurate binding
sites of aptamers to proteins at the single nucleotide
level.290,291 Aptamers can be cleaved by DNAzymes when
they are not bound to target proteins, while aptamers interact
with proteins to form complexes that can protect the binding
region of aptamers from DNAzyme hydrolysis.292 Hence,
interaction sites can be evaluated by comparing footprinting
experiments in the presence and absence of the target proteins.
For instance, Chinnapen et al. successfully identified aptamers
capable of binding cytochrome c and hemin simultaneously.293

By utilizing footprinting assay, they proved that the binding
site of an aptamer to cytochrome c was immediately adjacent
to its guanine-rich hemin-binding site. Chen and Corn
developed a DNAzyme footprinting based on the site-specific
nucleic acid cleavage activity of DNAzyme for visualizing the
interactions of single-stranded DNA aptamers and target
proteins.292 Single-stranded aptamers are cleaved by the
DNAzyme when not bound to the target proteins, while the
formation of aptamer−protein complexes can block the access
of the DNAzyme to the cleavage site and prevent hydrolysis.
Using thrombin as a model protein, they investigated the

aptamer−thrombin interactions utilizing a DNAzyme that
cleaves the thrombin aptamer at the thymine base position 7 in
the aptamer sequence.
3.4. Other Assays

Apart from the three categories of assays described above,
several other methods exist for detecting aptamer−protein
interactions, including Isothermal Titration Calorimetry
(ITC), Microscale Thermophoresis (MST), Quartz Crystal
Microbalance (QCM), and Atomic Force Microscopy
(AFM).294−297

ITC and MST are two essential thermodynamic techniques
for monitoring aptamer−protein interactions.77,298 For ITC,
the formation of aptamer−protein complexes is a process that
is accompanied by a certain degree of heat change.299,300 The
principle and stepwise progress of ITC experiments are shown
in Figure 6A. By directly measuring the heat change during the
interaction at a constant temperature, ITC is able to provide
information about aptamer−protein interactions, such as
binding affinity, thermodynamic parameters, and the number
of binding sites.28,301 For instance, Amano’s team screened and
obtained the aptamer S4−S, specific to the Runt domain (RD,
DNA-binding domain) of AML1 protein.302 Further, ITC was
applied to analyze the thermodynamics of the interactions
between S4−S and AML1 (Figure 6B), and information about
their interaction was obtained, including thermodynamic
parameters (ΔH = −56 ± 1 kcal mol−1, −TΔS = −45 ± 1
kcal mol−1 at 298 K) and affinity constants (KD = 3.5 ± 0.4
nM). The main principle of MST analysis is based on the
directional movement of molecules along temperature
gradients.303 The intrinsic properties of molecules, including
their size, charge, and hydration shell, determine their
thermophoretic movements.304,305 In general, when the
binding of aptamers to target proteins occurs, the above-
mentioned properties of aptamers change and thus alter their
movement.306 Information on aptamer−protein interactions
can be obtained by monitoring the distribution and intensity
changes in fluorescence signals of fluorescent dye-labeled
aptamers.307,308

QCM is a microgravimetric sensing strategy for determining
aptamer−protein interactions.309−311 Utilizing the piezoelec-
tric effect of quartz crystals, QCM converts the surface mass
change of the quartz crystal electrode into frequency shift of
the quartz crystal resonator.312−314 In a typical QCM

Figure 6. (A) Schematic diagram of an ITC experiment. (B) ITC data for S4−S−RD interaction. Reprinted with permission from ref 302.
Copyright 2016 American Chemical Society. (C) Schematic diagram of an AFM experiment. (D) Typical force−distance curves of aptamer−IgE
(top) and scramble oligo−IgE (bottom). Reprinted with permission from ref 322. Copyright 2003 American Chemical Society.
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experiment, the binding of aptamers immobilized on the
crystal surface and their target proteins will introduce a mass
change of the QCM surface, allowing the highly sensitive
detection of aptamer−protein interactions.315,316 Lin et al.
generated two mutated aptamer sequences, RBD-1CM1 and
RBD-1CM2, based on a known aptamer that specifically
recognizes SARS-CoV-2 spike protein (S protein).317 Next,
QCM was performed to characterize the interactions between
these mutant aptamers and the S protein. The results indicated
that the RBD-1CM1 aptamer produced larger signals in mass
change and displayed a significant binding affinity to the S
protein (KD = 1.2 × 105 M−1).

Using microcantilevers that are extremely sensitive to weak
force as signal transducers, AFM enables probing the binding
affinity and recognition properties of aptamers to target
proteins at the molecular level.95,318,319 Typically, the aptamer
is linked to the tip of the AFM probe.320 The strength of
aptamer−protein interactions is evaluated by detecting the
unbinding events between the functionalized tip and the
protein-modified substrate (Figure 6C).77,321 Jiang and Zhu
presented the first study of the interaction strength between
proteins and aptamers.322 As show in Figure 6D, the specific
interaction between human immunoglobulin E (IgE) and its
DNA aptamer was measured directly by atomic force

Figure 7. (A) Intermolecular NOESY cross peaks observed for the K5 (F) and W3 (G) residues of P16, respectively. (B) NMR structure ensemble
of the R12:P16 complex. The two R12 monomers are colored red and blue, respectively. The two P16 monomers are colored magenta and purple,
respectively. (A,B) Reprinted with permission from ref 337. Copyright 2012 Oxford University Press under CC BY-NC 3.0 [https://
creativecommons.org/licenses/by-nc/3.0/]. (C) Structural characteristics of the interaction interfaces between chemically modified TBA15 and
thrombin. Reprinted with permission from ref 348. Copyright 2021 Cell Press under CC BY-NC-ND 4.0 [http://creativecommons.org/licenses/
by-nc-nd/4.0/]. (D) Cryo-EM density map and refined structure of tJBA8.1-bound TfR1. (E) Molecular interactions at the tJBA8.1−TfR1
interface. (D,E) Reprinted with permission from ref 355. Copyright 2022 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00377
Chem. Rev. 2023, 123, 12471−12506

12485

https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig7&ref=pdf
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig7&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00377?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


microscopy. Furthermore, the aptamer or anti-IgE monoclonal
antibody was modified at the AFM tip. AFM was then applied
to measure the forces required to separate the interaction
between individual aptamer/anti-IgE and IgE. In comparison
with the binding affinity of IgE−anti-IgE (∼139 ± 43 pN), the
aptamer−IgE interactions exhibited comparable or stronger
binding affinity (∼160 ± 29 pN).

4. STRUCTURE DETERMINATION OF
APTAMER−PROTEIN INTERACTION SITES

Protein surfaces present multiple interaction sites that can be
specifically recognized and bound by aptamers.323 Aptamers
can fold into specific three-dimensional structures for specific
molecular recognition.10,40 Characteristic structural motifs are
employed as scaffolds on the surfaces of three-dimensional
structures to precisely organize and display nucleotides bound
to specific sites on proteins.50,323 Structural determination of
aptamer−protein complexes can provide characteristic in-
formation such as interaction sites, providing detailed
information on the molecular basis for understanding the
specific interactions between aptamers and their target
proteins.324−326 Combining the methods of structural deter-
mination with the approaches of interaction detection
described above can offer more precise regulatory strategies
for aptamer−protein interactions.
Nuclear magnetic resonance spectroscopy (NMR) has been

one of the main methods to provide atomic resolution
structures and information about interaction interfaces of
aptamer−protein complexes.207 Aptamer−protein interactions
can give rise to variations in chemical environment around the
atoms at the interface, thus inducing chemical shift
perturbations in NMR spectra.327,328 Consequently, tracking
assays for changes in chemical shifts, in combination with
isotope labeling strategies (most commonly 1H, 15N, 13C, and
so on), allow information on interaction interfaces such as
binding sites to be determined.226,329−331 Conformational
changes upon aptamers binding to their targets have been
reported to cause additional peaks in the imine proton region
(10−15 ppm), and these peaks can serve as a reporting signal
for aptamer−ligand binding.324,332 For instance, Weisshoff et
al. found several DNA-susceptible peptide structures in the
spike protein of SARS-CoV-2 and exploited NMR to examine
the actual binding effect of these sequences with the aptamer,
BC 007.333 Specific binding of BC 007 to these peptide
sequences was able to generate typical imino signal-patterns.
Subsequent analysis in combination with the protein data bank
entries of the full proteins identified BC 007−spike protein
interaction sites. Besides, the nuclear Overhauser effect (NOE)
is also an important parameter in NMR experiments.334,335

NOE phenomena are usually observed when two atoms are in
close spatial proximity (<0.5 nm).336 Thus, two-dimensional
NOE (HOESY) experiments can give information about the
spatial distance between atoms, making it possible to apply
NMR to resolve three-dimensional structures of aptamer−
protein complexes. Mashima’s group elucidated the structural
basis for tight interactions between prion proteins (PrPs) and
their aptamer R12 utilizing NMR techniques.337 Specifically,
residues 108−119 (GQWNKPSKPKTN, designated as P16)
of bPrP were identified as specific binding sequences for R12.
R12/P16 molar ratios in the complex were determined to be
1:1 by monitoring the chemical shifts of imino protons.
Furthermore, the NOESY cross peaks were acquired to further
illustrate that the structure of the R12:P16 complex consisted

of two R12 monomers and two P16 monomers, and three
lysine residues of P16 were involved in the electrostatic
interaction with phosphate groups of R12 (Figures 7A−B). In
addition to the commonly used 1H, 15N, and 13C, fluorine-19
(19F) NMR can also be used for structural characterization of
aptamer−protein complexes. The high susceptibility of the 19F
nucleus to changes in the environment makes it an ideal tool to
study conformational changes.338,339 Moreover, 19F is absent in
natural compounds, and its integration into nucleic acid
sequences yields readily interpretable spectra.340,341 Based on
these advantages of 19F NMR, Baranowski et al. used 19F-
labeled oligonucleotides as NMR probes to study the G-
quadruplex formation of TBA15 and TBA15−thrombin
interactions.342 The above studies indicated that NMR
techniques are vitally instructive for revealing high-resolution
information on aptamer−protein interaction interfaces. Where-
as, NMR techniques are confined to high-resolution structures
of the molecules with relatively small molecular weights (<30−
40 kDa), owing to the overlap mapping of the complex NMR
data.343−345

X-ray crystallography is a technique employed in the precise
determination of three-dimensional structures of aptamer−
protein complexes. In contrast to NMR, X-ray crystallography
is more suitable for analyzing aptamer−protein complexes with
larger molecular weights, providing detailed information on
aptamer−protein interactions.323,325 The crystal structure of a
ternary complex formed by one protein and two aptamers was
first proposed by Pica et al.346 Aptamers TBA15 and TBA29
have been reported to bind specifically to thrombin exosites I
and II, respectively. Thus, using thrombin as well as TBA15
and TBA29 as study models, they performed X-ray
crystallography to resolve the structural features of this ternary
complex. The conformation of TBA29 differs subtly in the
ternary complex from that in the TBA29−thrombin binary
complex, shedding light on the cooperative mechanisms
generated by the interactions of TBA15 and TBA29 with
thrombin. Crystal structure determination of aptamer−protein
complexes can not only understand the interaction mechanism
at the molecular level, but also provide theoretical guidance for
regulatory strategies of the interactions such as chemical
modification. Kato’s team identified RB011, an aptamer
capable of specifically inhibiting the activity of ATX, a plasma
lysophospholipase D.347 X-ray crystallographic analyses of the
ATX−RB011 complex showed that RB011 bound near the
hydrophobic pocket of ATX via specific interactions,
preventing the binding of ATX to the catalytic substrates
due to steric hindrance. Comparatively, the small-compound
inhibitors were found to occupy the hydrophobic pocket of
ATX by their hydrophobic scaffold, thereby inhibiting catalytic
activity of ATX. In view of this, p-methyl and p-isopropyl
groups were introduced into the backbone phosphate between
C12 and C13 of RB011, generating RB012 and RB013,
respectively. These chemical modifications effectively occluded
the hydrophobic pocket of ATX and further enhanced the
inhibitory activity of the anti-ATX aptamer. Further, X-ray
crystallography can also be exploited to capture structural
information on chemically modified aptamer−protein com-
plexes, providing profound insights into the regulation of
interactions at the molecular level. Smirnow and co-workers
utilized X-ray crystallography to display the structural features
of the chemically modified TBA15−thrombin interface (Figure
7C).348 It was found that chemical modification of the T3
residue was able to regulate TBA15−thrombin interactions by
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modulating the contacts of the oligonucleotide with exosite I.
Additionally, by combining X-ray crystallography with the
above-mentioned assays to detect interactions such as EMSA
and ITC, Grau et al. offered comprehensive information on the
interactions between the bacterial repressor TetR and the
TetR-binding aptamer, including binding affinity constants (KD
= 5.6 nM), thermodynamic parameters (ΔH = −156.0 kJ
mol−1, ΔS = −365.2 J mol−1 K−1), and interaction sites
(important residues includes Arg28, Gln38, and Tyr42).349 In
fact, despite X-ray crystallography providing a molecular basis
for understanding aptamer−protein interactions, this techni-
que also suffers from certain limitations. In the whole process
of resolving aptamer−protein complexes using X-ray crystal-
lography, the most crucial step is the acquisition of the
diffraction crystals.350,351 Nevertheless, since cocrystallization
relies on many factors such as the purity and conformation of
the aptamer, as well as the ratio between the aptamer and its
target protein, it is often difficult to obtain high-quality
aptamer−protein crystals.323,325
With recent technological advances, cryo-electron micros-

copy (Cryo-EM) has been developed to determine three-
dimensional structures of aptamer−protein complexes. Cryo-
EM rapidly converts aptamer−protein complexes from a
solution state to a glass-like state by means of fast-freezing
techniques to maintain the native structure of complexes.352,353

Obviating the need to obtain high-quality crystals, Cryo-EM
enables structural analysis of aptamer−protein complexes in
the near-natural state to gain high-resolution information on
aptamer−protein interactions.354 Kacherovsky and Yang
developed a DNA aptamer, SNAP1, capable of binding to
SARS-CoV-2 S protein with high affinity and specificity.175

Cryo-EM was utilized to further identify that SNAP1 was only
bound to the S N-terminal domain (NTD) including a part of
an antigenic supersite targeted by NTD-binding antibodies.
These findings revealed the importance of NTD in
immunotherapy and vaccine design. Recently, aptamer
tJBA8.1 that specifically binds to transferrin receptor 1
(TfR1) was reported by Cheng et al.355 They presented for
the first time a cryo-EM map of TfR1 in complex with an
aptamer, revealing details of the tJBA8.1−TfR1 interface: a
binding site shared by tJBA8.1 and holo-transferrin (the
natural ligand of TfR1) on TfR1 (Figure 7D). The types of
interactions that occur at the tJBA8.1−TfR1 binding interface
between individual protein residues and nucleotides include
hydrophobic interactions between Leu619 and the base of T21
as well as Phe650 and the base and sugar of T23 (Figure 7E).
Kim’s group developed two chemically modified aptamers, A43
and A62, as agonists of the insulin receptor (IR) to modulate
IR autophosphorylation and downstream signaling path-
ways.356 The structure of A43/A62-IR complex was
determined by cryo-EM in the range of 3.62 to 4.27 Å
resolution. The obtained structural information elucidated the
conformational dynamics of IR activation related to signaling
pathways, providing a structural basis for the design of
functionally selective agonists for IR. Taken together, Cryo-
EM can help to reveal the structural characteristics of
aptamer−protein interactions and offer structural guidance to
design the regulatory strategies for the interactions. Never-
theless, the widespread application of Cryo-EM technology is
still limited by many factors. Requiring large sample molecular
weight (limit of detection ∼0.1 MDa), Cryo-EM is not
appropriate to study most aptamer−protein interactions.46,325
Besides, given that biological samples are vulnerable to

radiation damage from the electron beam, low electron doses
are used in Cryo-EM experiments and result in low-resolution
image features.357−359 In addition, ultrahigh-resolution cryo-
EM maps demand sufficient data collection that usually takes
hours or even days, and the subsequent data analysis is
complicated.360,361 Ultimately, cryo-EM facilities are extremely
sophisticated and costly, requiring massive capital and labor
investment in installation, maintenance, and operation.362

Thereby, Cryo-EM technology is still under development and
needs further improvement.

5. ANALYTICAL ASSAYS BASED ON THE
REGULATION OF APTAMER−PROTEIN
INTERACTIONS

Regulation of aptamer−protein interactions enables the
selective analysis of biomolecules and affords new insights
into the fundamental processes of various life activities.
Moreover, it can also identify clinically important biomarkers,
providing a guide not only for the study of molecular
mechanisms of human diseases but also for the diagnosis
and treatment of diseases.35 Therefore, numerous analytical
methods based on the regulation of aptamer−protein
interactions have been rationally designed and developed.
5.1. Detection Based on Hydrogen Bond Interactions

Hydrogen bonding is considered to be the most common
interaction between aptamers and target proteins, representing
the main driving force in the aptamer−protein binding
processes.45 Recently, based on hydrogen bond interactions
between aptamers and their target proteins, various analytical
assays have been developed for the detection of key
biomolecules. Thrombin is a serine protease that plays a
crucial role in numerous physiological and pathological
processes in the body.363,364 Studies have demonstrated that
arginine in thrombin exhibits the potential as a hydrogen bond
donor due to the positively charged guanidine group,
endowing thrombin with the ability to form multiple hydrogen
bonds.346,365,366 As an aptamer that specifically binds to
thrombin, TBA15 is able to fold into G-quadruplex structures
for specific interaction with thrombin.367 The crystallographic
structure of TBA−thrombin complexes presents that the
interaction interface consists of the nucleobases in two TT
loops of TBA15 (T3-T4 and T12-T13 loops) as well as
thrombin residues inserted between these two loops.114

Moreover, TBA−thrombin interactions mainly rely on hydro-
gen bonding interactions.368,369 Hence, TBA15 has been
utilized to design multiple sensing strategies for highly sensitive
and specific detection of thrombin by regulating hydrogen
bond interactions of TBA15 with thrombin.368 Xiong’s group
combined MPA-Mn:ZnS quantum dots (QDs) with BHQ2-
tagged TBA15 (TBA-BHQ2) to form QDs/TBA-BHQ2
complexes.370 In the QDs/TBA-BHQ2 system, phosphores-
cent QDs acted as the energy donors, and TBA-BHQ2 served
as the energy acceptors. The close proximity of QDs and TBA-
BHQ2 made this system nonluminescent in phosphorescence
resonance energy transfer (PRET). Upon the addition of
thrombin, the strong interaction between TBA15 and
thrombin forced QDs away from the QDs/TBA-BHQ2
complex, leading to the phosphorescence recovery. Con-
sequently, the concentration of thrombin could be determined
by measuring the restoring phosphorescence intensity change
value. Prostate-specific membrane antigen (PSMA) is a well-
characterized tumor marker related to neovascularization in
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prostate cancer and most solid tumors; thus, the highly
sensitive detection of PSMA is of great significance.371,372 The
analysis of the interface between PMSA and its aptamer A9g
indicated the formation of an extensive network of hydrogen
bonding, including direct and water-mediated.373 These
hydrogen bonding interactions play a dominant role in the
specific binding of A9g to PSMA. On this basis, Omer et al.
implemented click chemical reaction to splice multiple A9g on
the Holliday junction (HJ) labeled with Cy5 for imaging
detection of PMSA, as shown in Figure 8A.374 As the amount
of A9g increased, the fluorescence intensity improved
significantly owing to the enhanced multivalent interactions
(Figure 8B). Furthermore, regulating the hydrogen bonding
between aptamers and proteins can not only achieve sensitive
detection of biomolecules, but also further alter the behavior of
biomolecules. It has been reported that fluorine atoms can be
regarded as hydrogen bond acceptors in principle by virtue of
high electronegativity.375−377 In view of this, Bao et al.
introduced 8-trifluoromethyl-2′-deoxyguanosine (FG) at differ-
ent sites of TBA15, such as G5 and G14, respectively. They
further monitored the anticoagulant activity of different-site-
modified TBA15 by means of optical coagulation analyzer.378

The results indicated that, owing to the formation of an
additional hydrogen bond between the trifluoromethyl group
and side chains of thrombin, the modification of FG near the
TT loops significantly enhanced the anticoagulant activity of
TBA15. Hence, it is a potential therapeutic strategy that
introducing fluorine atoms to regulate the activity of thrombin
via hydrogen-bonding modulation.
In addition to optical detection methods, electrical detection

methods based on hydrogen-bonding regulation have also been
widely applied in biomolecule detection. This is because the
regulation of hydrogen bonding interactions between aptamers
and proteins can transduce biomolecular information into

changes in electrical signals. For example, Wang and colleagues
constructed a unique nanocomposite by covalently attaching
TBA15 on graphene for thrombin sensing, as illustrated in
Figure 8C.379 In the presence of thrombin, a quadruplex−
thrombin complex is formed based on hydrogen bond
interactions of TBA15 with thrombin. This complex increases
the steric hindrance and severely inhibits electron transfer for
redox probes [Fe(CN)6]3−/4−. As the concentration of
thrombin increased, the DPV current peaks gradually decrease,
thus achieving highly sensitive detection of thrombin (limit of
detection ∼0.45 fM) (Figure 8D).
In summary, the extensive hydrogen bonding network

between aptamers and proteins is the primary driving force
of their binding processes. Analytical methods based on the
regulation of hydrogen bond interactions can significantly
improve the sensitivity of biomolecular detection, making great
contributions to their development in the field of bioanalysis.
5.2. Detection Based on Electrostatic Interactions
Electrostatic interaction is another important force that
mediates the aptamer−protein binding processes.380,381

Studies have confirmed that electrostatic interactions mainly
occur between negatively charged phosphate backbones and
positively charged protein residues.44,45 Altering the structure
of aptamers can alter the electrostatic interactions between
aptamers and proteins. On this basis, plenty of methods have
been established to accomplish biomolecule detection with
high sensitivity and specificity.
Optical methods have become one of the most utilized

approaches in analytical fields for their pronounced sensitiv-
ity.382 Electrostatic interactions between aptamers and proteins
can induce changes in the optical properties of interaction
interfaces, thereby transforming biomolecular information into
alterations in various optical signals. As a consequence,
numerous optical assays have been developed for the detection

Figure 8. (A) Schematic illustration of the self-assembly process of HJ coupled with different amounts of A9g. (B) Confocal microscopy images of
PC3+ cells treated with different amounts of A9g. (A,B) Reprinted with permission from ref 374. Copyright 2020 Cell Press under CC BY-NC-ND
4.0 [http://creativecommons.org/licenses/by-nc-nd/4.0/]. (C) Schematic diagram of the construction of the GR−TBA-based aptasensor and its
sensing mechanism. (D) The relationship between the DPV response and thrombin concentration (left) and the calibration curve between the
current response and thrombin concentration (right). (C,D) Adapted with permission from ref 379. Copyright 2012 Royal Society of Chemistry.
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of crucial biomolecules. The specific detection of manganese
superoxide dismutase (MnSOD), a specific liver cancer
biomarker, is of great significance for clinical diagnosis.383,384

MnSOD-targeting aptamers were found to bind MnSOD in
solution. It was found that the binding process of MnSOD-
targeting aptamers to MnSOD in solution is dominated by
electrostatic interactions, conferring on aptamers the ability to
act as recognition elements for the MnSOD biosensors.385

Thus, Cottat et al. constructed a SERS nanobiosensor with
high specificity and sensitivity by coating MnSOD-binding
aptamers on a nanoantenna surface.386 This SERS nano-
biosensor was able to detect MnSOD in different body fluids
(serum and saliva) at concentrations in the nanomolar range.
Glycated albumin (GA) is a key biomarker in the diagnosis and
treatment of diabetes mellitus.387−389 To improve the
specificity and accuracy of GA detection, researchers have
identified aptamers that specifically bind to GA. Utilizing the
SPR technique, Sun and co-workers revealed for the first time
that the interaction mechanism between GA, and its aptamer is
driven by electrostatic force.390 Considering this interaction
mechanism, Ghosh et al. combined GA aptamers with
semiconductor quantum dots (QDs) as well as AuNPs for
the optical detection of GA.220 As shown in Figure 9A, the GA

aptamer was designed into a molecular beacon structure with
two ends attached to the QD and AuNP, respectively, to
construct a FRET sensor. When the GA concentration
increases within the range of 0 nM to 14500 nM, a linear
increase in photoluminescence intensity of this sensor was
observed. The results showed that the average LOD for the
sensor was 0.067 μg mL−1, meeting practical detection needs.
Electrical methods exhibit broad development prospects in

rapid and on-site detection due to their advantages such as
high sensitivity and fast response.391 Aptamer−protein electro-
static interactions are able to induce changes in electrical
signals, making them applicable to electrical detection. Hence,
many electrical detection methods based on electrostatic
interactions have been constructed to acquire biomolecular
information. Platelet-derived growth factor-BB (PDGF-BB)
plays an important role in angiogenesis and is closely related to
the development of various tumors.392,393 Reportedly, the
specific binding interaction between PDGF-BB aptamer and
PDGF-BB could be applied in the regulation of angio-
genesis.394 The structural characterization of the aptamer−
PDGF-BB complex revealed that dimeric forms of PDGF-BB
present two identical binding sites to interact electrostatically
with aptamers.395 In light of this, Wang’s group developed an

Figure 9. (A) Schematic diagram of aptamer-based FRET sensor for the detection of glycated albumin. (B) Schematic diagram of antilysozyme
aptamers immobilized on gold electrodes for lysozyme detection. (C) Variations in the relative decrease in the integrated charge (reduction signal)
as the concentration of lysozyme increases (left). Linearized adsorption isotherm of lysozyme binding to antilysozyme aptamers on gold electrodes
based on the Langmuir model (right). (B,C) Reprinted and adapted with permission from ref 258. Copyright 2007 American Chemical Society.
(D) Schematic diagram of fluorescence−electrochemical dual detection technique for the quantification of GA. (E) Fluorescence and
electrochemical characteristics of the developed dual detection technique. (D,E) Reprinted and adapted with permission from ref 398. Copyright
2021 Royal Society of Chemistry.
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electrical detection method based on a “sandwich” structure by
immobilizing aptamers of PDGF-BB onto the substrate gold
electrode and the surface of AuNPs, respectively.396 When
PDFG-BB is present, one site binds to the aptamer
immobilized on the substrate gold electrode, and another
site binds to the aptamer loaded onto the surface of the
AuNPs, thus forming a “sandwich” structure. The subsequent
addition of positively charged electroactive molecule [Ru-
(NH3)5Cl]2+ provided significantly enhanced electrochemical
readout signals by electrostatic interaction with multiple
negatively charged aptamers on the surface of AuNPs via
electrostatic attraction. By means of CV, an observable
electrochemical response was obtained even for PDGF-BB
concentrations as low as 0.01 pM. Likewise, Cheng and Ge
also combined aptamer-modified gold electrodes with the CV
method for quantitative detection of target proteins (Figure
9B).258 The high specificity and sensitivity of this electrical
assay can be mainly attributed to the electrostatic interactions
between the antilysozyme DNA aptamer and lysozyme.397 As
presented in Figure 9C, with [Ru(NH3)6]3+ as the signaling
molecule, the quantification of lysozyme in unknown samples

was achieved by monitoring CV responses in the presence of
lysozyme at different concentrations.
Additionally, integrating optical and electrical strategies

based on aptamer−protein electrostatic interactions to
construct dual-mode detection techniques can further improve
the accuracy and sensitivity of biomolecular analysis.398 As
illustrated in Figure 9D, Putnin’s group fabricated a composite
comprising Pb ions adsorbed on graphene oxide (GO-Pb),
serving either as a quencher probe for fluorescence detection
or as a signal probe for electrochemical detection.398

Fluorescence−electrochemical dual detection technique for
the quantification of GA was subsequently established by
modifying this complex with FAM-labeled GA aptamer. When
the FAM-aptamer binds to the GO-Pb complex, fluorescence
quenching of FAM occurred due to FRET, and the oxidation
of Pb via electron transfer at the electrode ceases. In contrast,
strong electrostatic interactions between FAM-aptamer and
GA mediated their specific binding in the presence of GA,
leading to the detachment of FAM-aptamer from the complex.
While the fluorescence recovered, electrochemical signal
increases significantly due to the free GO-Pb complex. The

Figure 10. (A) The binding and LOD of native aptamer (AF83−1) and PS2-modified aptamers (AF83−7) to VEGF165 as observed by BLI.
Adopted with permission from ref 111. Copyright 2016 Oxford University Press under CC BY-NC 4.0 [http://creativecommons.org/licenses/by-
nc/4.0/]. (B) Schematic illustration of TBA15 functionalized with hydrophobic amino acid residues and prothrombin time assay results of various
hydrophobic residue-modified TBA15. Adopted with permission from ref 409. Copyright 2021 American Chemical Society. (C) The sandwich-
type ELAA assay for IFN-γ detection. Adopted with permission from ref 410. Copyright 2019 Oxford University Press under CC BY 4.0 [http://
creativecommons.org/licenses/by/4.0/].
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fluorescence−electrochemical dual detection technique ren-
dered a linear relationship with GA concentrations varying
from 0.001 to 80 μg mL−1 and 0.005 to 10 μg mL−1,
respectively, with detection limits of 8.80 ng mL−1 and 0.77 ng
mL−1 correspondingly (Figure 9E). Finally, the dual technique
also exhibited excellent GA detection capability when deployed
to clinical samples from diabetes patients, showing potential to
be applied as a diagnostic device for diabetes mellitus in the
clinical environment.
Overall, on the basis of the electrostatic interactions between

aptamers and proteins, numerous detection strategies can be
exploited for highly sensitive and specific analysis of key
biomolecules. These detection techniques also have tremen-
dous potential in the analysis of clinical samples.
5.3. Detection Based on Hydrophobic Interactions

Hydrophobic interactions have also been reported to facilitate
specific binding between aptamers and target proteins. In
general, hydrophobic interactions mostly involve the hydro-
phobic aromatic rings of aptamers and the aliphatic or
aromatic side chains of protein residues.23,50,114 Since nucleic
acids are usually hydrophilic, aptamers may not efficiently
interact with hydrophobic cavities of specific proteins.399

Integration of unnatural hydrophobic groups into aptamers can
regulate aptamer−protein hydrophobic interactions.400 This
section will discuss how to construct analytical assays based on
the regulation of aptamer−protein hydrophobic interactions to
realize the specificity analysis of biomolecules.
The phosphate backbone in aptamers is usually exposed and

easily contacts proteins, playing a crucial role in mediating
aptamer−protein interactions.111 Therefore, hydrophobic
modifications on the phosphate backbone can effectively
manipulate the hydrophobic interactions between aptamers
and proteins. Some reports have demonstrated that PS2
modifications of aptamers can increase their hydrophobic
interactions with proteins, enabling aptamers to bind to target
proteins with higher binding affinity.401−403 Pursuant to this,
Abeydeera’s group incorporated PS2 substitution at the G7
position of VEGF165-targeting aptamers to dramatically
increase VEGF165 binding affinity by ∼1000-fold (Figure
10A).111 Further, they found that BLI assay based on PS2-
modified aptamers was able to be used for highly sensitive
detection of VEGF165, with a LOD (≤0.38 pg mL−1)
significantly lower than that of native aptamer-based BIL
assay (≤3800.0 pg mL−1). This research demonstrated that,
owing to the enhanced hydrophobic interactions, aptamers
modified with hydrophobic groups exhibited remarkably
improved target binding affinity and detection capabilities.
The introduction of unnatural hydrophobic groups into

bases has also been confirmed to effectively regulate hydro-
phobic interactions between aptamers and proteins. Due to
poor or lack of enzymatic recognition capabilities, many base
modifications cannot be compatible with traditional SELEX
techniques and cannot be included in random libraries. This is
a major challenge for the development of chemical
modification strategies. If the modification appears in the
random library during the selection process rather than being
added later, it may provide new insights into the regulation of
aptamer−protein interactions. Reportedly, the groups that can
effectively regulate aptamer−protein hydrophobic interactions
generally possess hydrophobic aromatic character.23 The
common hydrophobic moieties resemble amino acid side
chains in proteins, including 3-indole-2-ethyl (Trp), Nap, Pp,

and so on.113 Such hydrophobic-group-modified nucleotides
are capable of producing unique motifs in direct contact with
proteins, thereby realizing the regulation of aptamer−protein
interactions.404 Taking advantage of aptamers modified with
Nap or Pp groups, Gawande et al. developed a sandwich-type
optical assay for detecting proprotein convertase subtilisin/
kexin type 9 (PCSK9, an effective therapeutic target for
hypercholesterolemia).113 Specifically, aptamers with a single
modification (dC/Pp-dU) and aptamers with two modifica-
tions (Nap-dC/Nap-dU) were used as capture and detection
probes for PCSK9, respectively. This sandwich-type assay
showed PCSK9 concentration-dependent signals. Moreover,
the authors also successfully applied the hydrophobic
interaction-based analytical strategy to PCSK9 measurements
in human plasma, demonstrating the practical effectiveness of
this strategy. Given the remarkable detection performance of
optical assays based on the regulation of aptamer−protein
hydrophobic interactions, researchers further combined them
with microarray technologies for quantitative detection of
various disease biomarkers, including EGFR, interleukin-6 (IL-
6), matrix metalloproteinase-2 (MMP-2), and neurogenic
locus notch homologue protein 3 (NOTCH 3).405−408

Besides, the regulation of hydrophobic interactions based on
modifications with protein-like side chains can also be used to
modulate the activity of critical proteins within living
organisms. Previously reported crystallographic studies re-
vealed that the TT loops of TBA15 play a crucial role in
TBA15−thrombin binding.114,368,369 Consequently, modifying
hydrophobic groups on the TT loops will cause the further
enhancement of TBA15−thrombin interactions. Yum and
Ishizuka significantly enhanced thrombin inhibition properties
of TBA15 by incorporating hydrophobic amino acid residues
(phenylalanine, methionine, and tryptophan) at the T3 and T4
positions in the loop region (Figure 10B).409

Furthermore, the development of artificial hydrophobic
bases also provides an alternative idea for constructing
analytical assays based on aptamer−protein hydrophobic
interactions.34 Kimoto et al. introduced unnatural hydrophobic
bases into the SELEX technique and yielded the interferon γ
(IFN-γ)-targeting aptamer I-Apt1 containing two Ds bases.410
The incorporation of Ds bases augments the capacity of
aptamers to interact with hydrophobic residues of target
proteins. Accordingly, the authors employed the combination
of I-Apt1 and antibody to construct a sandwich-type ELAA
assay for IFN-γ detection, as illustrated in Figure 10C.
Compared to native IFN-γ aptamer−antibody and antibody−
antibody sandwich systems, the sandwich-type ELAA platform
using the aptamer variants presented a higher detection
sensitivity and was successfully applied for the detection of
IFN-γ in human serum.
Altogether, the introduction of additional hydrophobic

groups into aptamers is able to alter their hydrophobic
interactions with target proteins. The analytical assays based
on hydrophobic interactions can achieve highly sensitive
detection of key biomolecules, providing a promising avenue
for clinical diagnosis.
5.4. Detection Based on Other Interactions

Other interactions between aptamers and proteins, such as
metal chelation interactions, π−π stacking, and van der Waals
forces, also drive the specific binding events of aptamers to
target proteins.411,412 Therefore, plentiful detection methods
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based on other interactions have been exploited to detect key
biomolecules.
In recent years, research on the formation mechanism of

metal−amino acid−nucleoside ternary compounds facilitate
the in-depth understanding of aptamer−protein chelation
mediated by metal ions.413−415 Metal ions can be contained
in proteins or aptamers, driving the metal chelation between
aptamers and proteins to promote their binding.414,416 Thus, a
series of analytical strategies based on metal chelation have
been established for biomolecular detection. The zinc finger
structure is a Zn2+-dependent folded finger-like domain.417,418

Proteins with zinc finger structures (zinc-finger proteins) are
usually functional proteins involved in the regulation of gene
expression.419,420 For instance, as a key biomarker of human
immunodeficiency virus type 1 (HIV-1), nucleocapsid protein
7 (NCp7) contains two zinc-finger structures and plays a
critical role in viral reverse transcription.421,422 To achieve
high-sensitivity detection of NCp7, an aptamer tightly bound
to NCp7 was developed, and their interaction was found to be
strongly dependent on Zn2+.423,424 Based on the specific
interactions between NCp7 and its aptamer, Niedzwiecki et al.
combined the nanopore technique with the resistive-pulse
technique for NCp7 quantification.425 With increasing
concentrations of NCp7, the amplitude of current blockades
enhanced proportionally, thus achieving highly sensitive
detection of NCp7. Moreover, integrating additional metal
chelation into aptamer−protein interactions has also been
proven to effectively modulate their binding. Taking aptamers
containing ferrocene bases (Fe bases) as an example, since
ferric irons can be coordinated to metal-binding sites of
proteins, the introduction of Fe bases can offer new chelation
effects for aptamer−protein interactions.119,426 Tan et al.
modified the EGFR-targeting aptamer containing Fe bases on
the surface of persistent luminescence nanoparticles (PLNPs)
to construct a highly sensitive and specific nanoprobe for the
optical detection of phosphorylated EGFR (P-EGFR).427

Concentration-dependent sensitivity analysis showed that this

nanoprobe exhibited a comparable sensitivity (∼20 ng mL−1)
to other strategies (such as fluorescence resonance energy
transfer and surface-enhanced Raman scattering), satisfying
stringent detection requirements in biological systems. Further,
real-time monitoring of dynamic changes in P-EGFR during
cell proliferation was achieved using this nanoprobe. On this
basis, Zhang and Chu designed an optimized P-EGFR optical
detection probe based on metal chelation (cb-Apt PLNPs).428

In this strategy, a circular bivalent aptamer (cb-Apt) containing
Fe bases were assembled on the surface of PLNPs, as is
depicted in Figure 11A. Confocal microscopy and flow
cytometric assays revealed that the cb-Apt displayed stronger
EGFR binding affinity than the monovalent aptamer (Figure
11B). This is mainly attributed to the additional metal
chelation introduced by the incorporation of Fe bases.
Moreover, the authors further employed cb-Apt-PLNPs to in
situ monitor the transport of P-EGFR from the cytoplasm to
the nucleus to the nucleus and its distribution in the nucleus.
The process of P-EGFR translocation has been reported to be
closely associated with abnormal proliferation, migration, and
antiapoptosis of tumor cells, and visualization of EGFR nuclear
translocation can lay the foundation for revealing the molecular
mechanism of tumor progression.429

π−π stacking is a stable noncovalent interaction that
primarily occurs between parallel aromatic rings.51−53,430 To
acquire biomolecular information with high efficiency,
researchers have also engineered analytical assays based on
the regulation of π−π stacking. For example, Gray and Deore
replaced the T3 base of TBA15 with a fluorescent base
analogue for thrombin detection.431 Concretely, a cyanine-
indole-quinolinium (4QI) hemicyanine dye tethered to an
acyclic 1,2-propanediol linker was used as the fluorescent base
analogue to construct a chemically modified thrombin aptamer
4QI-TBA16. Most importantly, 4QI adopted a unique
conformation in the aptamer via π−π stacking interactions
with T4 and T13, resulting in bright fluorescence (Figure
11C). Structural elucidation of 4QI-TBA16−thrombin com-

Figure 11. (A) Schematic of the synthesis process of cb-Apt-ALNPs. (B) Confocal microscopy and flow cytometric assays were utilized to
characterize the binding ability of cb-Apt and monovalent aptamers to A549 cells. (A,B) Reprinted with permission from ref 428. Copyright 2022
American Chemical Society. (C) Schematic illustration of 4QI-displacement at the T3 position of TBA15. (D) Fluorescence titration of 4QI-TBA16
with thrombin. (C,D) Reprinted and adapted with permission from ref 431. Copyright 2020 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00377
Chem. Rev. 2023, 123, 12471−12506

12492

https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00377?fig=fig11&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00377?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


plexes revealed that 4QI incorporation disrupted the stacking
interactions between T3 base in native TBA and residues
Tyr141 of thrombin. In the presence of thrombin, the binding
of thrombin to 4QI-TBA16 diminished π−π stacking
interactions between 4QI and the GQ structure, causing a
turn-off emission intensity response. Based on the regulation of
π−π stacking, highly sensitive and specific fluorescence
detection of thrombin can be achieved with an LOD of 150
nM by utilizing 4QI-TBA16 (Figure 11D).
Besides, van der Waals forces are a ubiquitous class of

intermolecular interaction that are involved in mediating
aptamer−target binding.54,432 For example, Nomura et al.
determined the crystal structure of the Fc fragment of human
IgG1 (hFc1) complexed with an anti-Fc RNA aptamer and
found that binding was mainly due to van der Waals forces and
hydrogen bonding interactions.433 Therefore, the synergistic
regulation of van der Waals forces and other interactions on
aptamer−protein binding process can also open a new avenue
for the development of biomolecular detection strategies.

6. SUMMARY AND OUTLOOK
Aptamers are able to fold into special three-dimensional
structures to interact with proteins via hydrogen bonding,
electrostatic interactions, hydrophobic interactions, π−π
stacking, and van der Waals forces. Modulating the structure
of aptamers can regulate aptamer−protein interactions and
further have an impact on the behaviors of biomolecules. Many
studies gradually turn their attention to the regulation of
aptamer−protein interactions, promoting its potential develop-
ment in analytical fields. In recent years, various analytical
assays based on the regulation of aptamer−protein interactions
have been rationally designed for the highly sensitive and
selective detection of key biomolecules in biological systems,
aiming to give vital guidance for studying the molecular
mechanisms of diseases. In this review, we surveyed methods
to regulate aptamer−protein interactions. Then, approaches
for analyzing aptamer−protein interactions as well as resolving
structures of aptamer−protein complexes were summarized in
detail. Furthermore, we gave a thorough elaboration on the
analytical assays based on the regulation of aptamer−protein
interactions and their applications in biomolecular detection.
Although considerable achievements have been made in

bioanalysis using assays based on the regulation of aptamer−
protein interactions, several challenges remain in this field. The
structural stability of aptamers is considered to be a vital factor
that has broad implications for aptamer−protein interac-
tions.18,434,435 Chemical modification, nanostructure design
and multifunctional integrated design of aptamers can
influence their structural stability and, in turn, regulate their
interaction with proteins. Indeed, these strategies are still at the
research stage in extending the bioanalytical applications of
assays based on the regulation of aptamer−protein inter-
actions. To advance this frontier, researchers might focus on
the following areas. For chemical modification, the types of
chemical groups currently used for chemical modifications are
limited, and partially chemical modified aptamers are subjected
to the compatibility of conventional screening techniques.
Regarding nanostructure design, the future development of
aptamer nanostructures is speculated to follow a trend of
increasing scale and complexity. This will undoubtedly increase
the difficulty in designing aptamer nanostructures. Moreover,
the regulatory effectiveness of multifunctional integrated
design strategies on aptamer−protein interactions is largely

influenced by the coverage density of aptamers, yet there is still
a lack of simple and accurate methods for measuring aptamer
density. Currently, the optimum loading density usually
requires many in vitro and in vivo experiments. Hence, to
expand the applicability of analytical assays based on the
regulation of aptamer−protein interactions, regulatory strat-
egies for aptamer−protein interactions need to be further
optimized or developed to improve the sensitivity and accuracy
of these assays.
Structural determination of aptamer−protein complexes

enables insights into the characteristic information about the
interactions of aptamers with proteins from a molecular
perspective, helping to reveal the molecular mechanisms of the
interactions. However, in most cases, the characterization of
aptamer−protein interactions has been confined to affinity
evaluation, and only few high-resolution structures of
aptamer−protein complexes have been reported. Currently,
NMR spectroscopy, X-ray crystallography, and Cryo-EM play
major roles in probing aptamer−protein interactions and
render detailed information on the molecular basis of the
interactions between aptamers and target proteins. Despite
this, all three methods suffer from limitations: NMR
spectroscopy is limited to structure resolution of relatively
small biomolecules (<30−40 kDa); for X-ray crystallography,
obtaining high-quality crystals is still a huge challenge to be
addressed in most cases; and Cryo-EM is also limited by a
number of shortcomings, such as the high detection limit
(∼0.1 MDa), cumbersome data processing, expensive equip-
ment, and high maintenance costs. These limitations mean
that, in applicability, none of the above approaches are versatile
structural analysis tools for accessing the detailed structural
features of aptamer−protein complexes described to date.
Recently, with the rapid development of computer science,
various molecular docking simulation programs have also been
utilized to study aptamer−protein interactions, such as
molecular operating environment (MOE) and collaborative
computational project number 4 (CCP4).50,436−438 These
computer simulation procedures are generally performed to
predict potential interaction sites and interaction modes. In
some cases where structural characteristics of aptamer−protein
complexes are not available, simulation software may help us to
better understand how aptamers interact with target proteins.
Nevertheless, these simulation programs are unable to predict
actual binding processes, and the prediction accuracy of
binding modes is limited.439−442 As a neural-network-based
method, AlphaFold can regularly predict protein structures
with atomic accuracy even when similar structures are not
known.443,444 However, there is currently no artificial-
intelligence-based tool comparable to Alphafold for aptamer
tertiary structure prediction and interaction analysis. There-
fore, there is still a need to improve and develop versatile
analytical tools to provide more accurate and comprehensive
information on aptamer−protein interactions, including the
types of interactions, spatial configurations, and binding sites.
Overall, design strategies for aptamer−protein interactions

have evolved considerably over the past two decades, yielding a
range of analytical assays based on the regulation of aptamer−
protein interactions. These analytical assays have brought
surprising and vastly unexplored avenues of research in
analytical science and biomedical science. It is believed that
collaborative efforts and cooperation between scientists with
different research backgrounds will bring innovations and
breakthroughs to the field in the near future, advancing the
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development of these analytical assays toward practical
implementations.
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